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Abstract

In this paper, we argue that the current guidelines for flagging “at-risk student 
responses” (i.e., student writing that is indicative of potential or experienced 
harm) are inadequate for assisting human graders in consistently identify these 
pieces of text.  The consequences of using inconsistently labeled data to train a 
statistical classifier to automatically detect these responses can be two-fold. First, 
student writing is flagged when it is actually normal, which places a strain on 
the resources allocated for reviewing alerted text. And, even more problematic, 
students who are asking for help may be overlooked.  As such, this paper puts 
forth an empirically-based and expert-vetted definition that consists of three 
tiers: (a) normal responses, (b) concerning responses, and (c) alert responses. To 
demonstrate the practicality of using this definition, we conduct an experiment 
where six human raters locate 13,000 pieces of student writing within these 
different categories, and find that, on average, they exhibit good agreement (an 
exact agreement rate of 87%, adjacent agreement of 11%, and a non-adjacent 
agreement of 1.4%). We also showcase how neural networks can classify these 
examples of student writing and find that the agreement statistics between the 
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Defining At-Risk Student 
Responses

Overview

In accordance with the best practice 
guidelines for large-scale statewide 
assessments, student responses that contain 
content that “constitutes an immediate and 
potential threat of harm, violence, abuse or 
illegal activity” should be flagged for further 
investigation (CCSSO & ATP, 2013). Historically, 
flagging such text has been the responsibility 
of human graders, and the absence of a 
published definition of at-risk student responses 
suggests that this task relies, at least partially, 
on subjective judgement and is treated as an 
ancillary, ad-hoc part of the scoring process.   
However, recent technological adaptations 
within online testing platforms gives cause to 
revisit and refine existing criteria intended to 
capture the spirit of this guideline and explore 
how, and to what extent, this particular type of 
student writing can be detected by both human 
graders and machines. 

Automated scoring systems are being 
used more widely in operational settings to 
score online assessments than ever before. 
While there is no published study on the use 
of automated scoring in state assessment 
programs, technical reports and anecdotal 
evidence suggests that use is growing and 
that automated scoring is used in concert with 
human scoring, whereby a score is assigned 
by either the engine or the human rater.  For 
example, in the 2016-2017 school year, PARCC 
assessments serviced six states, the Bureau of 
Indian Education, and the District of Columbia, 
and almost 70% of the scores for the prose 

1 https://assess.smarterbalanced.org/student/Projects/SBAC/Help/help.html

constructed-response tasks were assigned by 
an automated essay scoring system (Pearson, 
2018). Cambium Assessment, Inc. (CAI), which 
is the context for this present research study, 
employs automated scoring within eight state 
summative testing programs and ten state 
interim programs. CAI uses machine scoring 
on about 75% of the essay responses in the 
summative testing programs, and on all essay 
responses in the state interim programs. 
Furthermore, they have recently included 
automated scoring for short-answer items in five 
state interim programs.  

Concurrent to these advancements in 
scoring, online testing enables the storage and 
review of informal writing. Previously, students 
would be constrained to a text field provided 
for a given prompt, but now they are sometimes 
equipped with a digital notepad1 where, 
alongside drafting answers to test questions, 
they can also write down any other thoughts 
and self-reflections. Though these virtual pieces 
of scratch paper are not scored, they should 
arguably still be reviewed, along with the rest 
of the assessment, to ensure that the student 
isn’t reporting harm or requesting intervention. 
Although such review would add to the scope 
of human rating beyond the provision of scores, 
this influx in student writing can be subjected 
to automatic detection, by means and methods 
similar to existing processes associated with 
an automated scoring system, intended to flag 
other forms of aberrant student writing (e.g., 
off-topic responses). Automated scoring systems 
also offer the ability to detect such responses 
quickly, with a day or even hours of submission. 

While such detection systems rely on 
automated techniques, the underlying classifiers 
of these methods depend on a set of labeled 

machine and adjudicated scores are only slightly lower than the agreement 
statistics of two human raters. While we are cautiously optimistic about our 
findings – that our definition can be modeled by both humans and machines – 
we recommend clarifying particular parts of the rubric for rater training, as well as 
revisiting the parameters of the neural networks for improving model performance. 
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student writing. As such, inconsistently classified 
student writing in the training data will adversely 
impact the accuracy of the model, which results 
in not only unnecessarily identifying students 
who are not in need of intervention, but also 
increases the risk of ignoring troubled students. 
It follows, then, that a clear definition that can be 
consistently interpreted by humans, needs to be 
established. 

Currently, there is not an agreed-upon 
definition across state interim and summative 
assessments. However, the following hand 
scoring guidelines outlined by the Smart 
Balanced Assessment Consortium instruct 
graders to flag the following (but not limited) 
forms of harm: Suicide, criminal activity, alcohol 
or drug use, extreme depression, violence, rape, 
sexual or physical abuse, self-harm or intent to 
harm others, or neglect (n.d., p., 10).

While this list provides salient examples 
of a student either being harmed, or harming 
someone else, these descriptions lack examples 
around what the CCSSO describes as the 
potential for harm, violence, abuse or illegal 
activities. That is, even if a student doesn’t 
explicitly report a harmful situation, their 
response might still contain language that gives 
pause to the human graders, who are hesitant 
to ignore a veiled request for help or a covert 
threat. Take, for example, when students use 
non-literal but violent phrases and hostile 
language to express frustration over a test, 
or when a student conveys that they feel that 
they are inadequate and can’t measure up to 
academic expectations. Students also make use 
of other emotive language, such as sadness 
or loneliness, that express negative sentiment 
towards themselves and their lives and, while 
hinting at a request for intervention, they don’t 
explicitly report imminent harm. Examples of 
such text include the hyperbolic and frustrated 
statement, “kill me now,” and this piece of text 
exhibiting depression (that may or may not be 
test-related), “I hate my life.” And, while the 
emotion expressed in such responses doesn’t 
configure into the Smarter Balanced examples 
outlined above, we explore the role of emotion 
in the types of responses that complicate 
existing instructions for flagging at-risk student 

responses. Having a reasoned definition 
combined with a consistent procedure for the 
varieties of responses can support a correct 
and timely intervention of a potentially troubled 
student. 

This present study attempts to clarify 
the definition of at-risk student responses by 
proposing a tiered approach for classifying such 
responses, in which we then delineate between 
three different types of student writing: a) normal 
responses; b) responses that are concerning 
in nature; and, c) responses that adhere to the 
existing definition of reporting or causing harm 
to the self or someone else. This design aims 
to guide human graders in making consistent 
classifications by removing the polarity of benign 
vs. problematic responses and by making 
allowances to ensure that students in need 
of intervention are not being overlooked. We 
then explore the consistency of humans when 
adhering to this tiered definition, as well as the 
agreement between humans and machine multi-
class classification. Figure 1 outlines this high-
level process.

Develop Tiered
Definition of At-Risk
Student Response

Train Humans
to Classify

Student Text

Train Models
to Classify

Student Text

Figure 1. Overview of Project

As such, this paper is guided by three 
different research questions; the results and 
data generated from each question informs the 
following one. 

1. Research Question 1: Defining At-Risk 
Student Responses

a. Given that many of the responses that 
may be indicative of potential harm 
seem to be emotional in nature, how 
can the use of an emotive qualitive 
coding scheme inform and support the 
development of a tiered definition of 
alert? 

2. Research Question 2: Humans Detection of 
At-Risk Student Responses

a. Can humans distinguish between the 
three categories of the tiered definition 
set forth in the first research question?
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i. What are the inter-rater agreement 
rates of humans?

ii. Which tier(s) were the easiest and 
which were most challenging for 
humans to agree on the placement 
of student writing? 

3. Research Question 3: Machine Detection 
of At-Risk Student Responses

a. Using the labeled training data from 
the previous research question, how 
successful are statistical classifiers at 
distinguishing between these three 
levels?
i. How does the performance of a 

linear classifier compare to neural 
networks that vary in complexity?

ii. How do different vectorized 
representations of student writing 
impact model performance? That is, 
how does a bag-of-words approach 
compare to word embeddings? 

We then tie these three components 
together to discuss affordances and limitations 
of this approach to defining at-risk student 
responses, making recommendations for 
implementing such a model in operational use. 

Background

There are only two studies exploring 
the issue of detecting alerts within online 
assessments (Ormerod & Harris, 2018; 
Burkhardt, et al., 2016). One challenge inherent 
to this research is the rarity of these student 
responses. To address this problem, “synthetic” 
student responses data, gathered from publicly 
available data online, have been used to 
supplement the expected and typical student 
writing. 

As noted above, this study took place at 
Cambium Assessment, Inc., as did the work 
of Ormerod and Harris (2018) who collected 
data from a web forum called “teen line”2 that 
provides a platform for teenagers to share their 
problems and ask for help from other teenagers. 
Ormerod and Harris (2018) also used data from 

2 https://teenlineonline.org/board/

reddit, a discussion website where anonymous 
users can publicly share and discuss questions, 
ideas and links with others. Within the reddit 
website, discussion themes are separated into 
different forums, which are known as subreddits. 
The synthetic data from both sources were 
reviewed by human graders to ensure that the 
data reflected the tone, content and writing style 
consistent with student responses. 

Burkhardt et al. (2016), also supplemented 
normal student responses with text taken from 
various subreddits that focused on symptoms 
associated with child abuse and neglect, such as 
self-harm and suicide (as well as explicit reports 
of abuse). While Burkhardt et al. (2016) relied on 
an underspecified definition to flag any response 
that exhibited symptoms of a student in need, 
Ormerod and Harris (2018) used a definition 
similar to that of Smarter Balanced and noted 
that there wasn’t a systematic way to classified 
potential harm (and that responses of potential 
harm were sometimes classified as alerts). 

While both papers explored the model 
performance of different classifiers, Burkhardt 
et al. (2016) focused on blending results from 
support vector machines, gradient boosted 
regression trees and random forests, along with 
a rule-based model. The best ensembled model, 
consisting of the voting rule that a response was 
flagged as an alert when two or more of the four 
models agreed that a response was an alert, 
produced a recall of .92 and precision of .84 on 
a test set.

Ormerod and Harris (2016) compared a 
baseline logistic regression model to 16 neural 
networks varying in complexity. Instead of a 
binary classification, the output from each model 
was the confidence that a piece of student 
writing was a true alert. The percentage of the 
alerts caught by each model was evaluated 
based on the different thresholds of responses 
being able to be reviewed, ranging from .1% to 
4%. Not surprisingly, they found that the largest 
percentage of alerts caught by the model (98.7% 
of all alerts present in the test set) occurred 
when 4% of all test responses were being 
reviewed. 
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Adjacent research in efforts to detect 
internet bullying, toxic comments, and indicators 
of poor mental health in text also informs this 
present study. Facebook recently announced 
their efforts in detecting suicidal language 
within users’ posts3. While the manual reporting 
of posts has been ongoing for some time 
(where users can then be connected to support 
resources), they have moved on to automatic 
classification, and have faced similar challenges 
in this present study. First, they noted that words 
that are oftentimes associated with suicide are 
also benign in other contexts – words, such as 
“kill”, and “die” and “goodbye.” To exemplify 
this issue, they provided an example similar 
to what we have discussed above: “I have so 
much homework I want to kill myself.”  And, 
while Facebook determined that this response 
does not meet the criteria to be flagged, it does 
introduce the complexities of this classification 
task, and the reliance on human judgement 
required in determining the subtle lexical cut-offs 
for what should and should not be flagged.

Another problem Facebook encountered 
was developing the labeled training set. For 
the examples of suicidal text, they relied on 
posts that had been flagged by users and were 
manually vetted to be truly suicidal. They then 
combined these positive examples with negative 
examples – not of normal posts, but rather of 
posts that had been flagged as potential suicide 
posts but were determined not to be a person at 
risk of suicide. In creating such a training sample, 
they suggest that it will help develop a “more 
nuanced” understanding of what a suicidal 
pattern is and what it isn’t. Various sequences of 
words (n-grams) were used as features to train 
a random forest classifier. The classification of 
each post is then subject to review by Facebook 
personnel, and if deemed necessary, the post’s 
author is then provided with resources, or 
escalated to local authorities. 

Along the lines of suicide prevention, 
Alhanai, Ghassemi, and Glass (2018) 
demonstrated that they could model the 

3 https://newsroom.fb.com/news/2018/09/inside-feed-suicide-prevention-and-ai/
4 https://www.perspectiveapi.com/#/

question-answer portion of a depression 
screening test conducted by a virtual agent and 
a human subject. They used 142 transcriptions 
from the interactions, as well as from 170 
possible questions (e.g., “How are you?”, “Do 
you consider yourself to be an introvert?”), which 
are stored in a publicly available corpus called 
the Distress Analysis and Interview Corpus 
(DIAC). They modeled the binary variable of 
depressed or not, as well as the multi-class 
classification of the severity of the depression. 
The text features that they used were then 
transformed into word embeddings (which are 
vector space representations of words aimed 
at mapping semantic meaning into geometric 
space) and used as features to train a number 
of different models, ranging from a baseline 
model of logistic regression, to more complex 
neural networks. They found that their models 
outperformed the baseline approaches that had 
previously been conducted, using the same 
corpus. 

While not specific to harm, or symptoms 
associated with potential self-harm, derogatory 
comments and bullying may also be included in 
student writing about past, present or potential 
harm. Google has created a tool that intends to 
detect toxic comments online – they define such 
text as a “rude, disrespectful, or unreasonable 
comment that is likely to make you leave a 
discussion.” The classification tool is called 
Perspective, and the labeled training data was 
collected by presenting internet comments to 
raters and asking them to rate each comment on 
a scale from “Very Toxic” to “Very Healthy”4.  

Nobata, Tetreault, Achint, Mehdad, & Chang 
(2016) used a regression model to identify 
abusive language in online user content. They 
document four classes of features: n-gram 
features (i.e., 3-5-character n-grams and 
unigrams and bigrams), linguistic features 
(e.g., length of comment, average length of 
word, number of punctuations, number of 
politeness words), syntactic features (which 
uses a dependency parser to capture long 
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range dependencies between words), and 
distributional semantics (e.g., pre-trained 
word embeddings). They found that the word 
embedding features were powerful when 
combined with standard NLP features, although 
character n-grams also worked well. 

The data used in Nobata, Tetreault, Achint, 
Mehdad, & Chang (2016) was also used in prior 
research (Djuric, et al., 2015) which used learning 
techniques of neural language modeling. The 
data in both of these studies were sampled 
from comments posted on Yahoo! Finance and 
News during the period between October 2012 
and January 2014 and were labeled by human 
raters as either “clean” or “abusive” text. The 
research in this present paper also uses internet 
comments to build the portion of the training 
sample considered disturbing content. 

This present study is situated in the existing 
research in the following ways. First, it sets forth 
a clear and detailed three-tiered definition that 
is empirically based and vetted by educational 
hand scoring experts. To defend the practicality 
of using this rubric we provide results on how 
well humans could distinguish between different 
tiers of true student writing (using a sample 
comprised entirely of student writing, without the 
use of synthetic data). Finally, we demonstrate 
the capability of various machine learning 
approaches in modeling human labels.

Defining At-Risk Student 
Responses

Methods

In order to define at-risk student responses, 
we applied the tiered definition framework to 
the context of large-scale handscoring efforts. 
The final structure of the tiered definition is 
as follows: Within each of the three tiers, we 
present a number of categories that further 
classify and characterized a piece of student 
writing. These categories and their supporting 
details are intended to guide the human grader 
in locating precisely where a given piece of 
student writing belongs within the definition. 

The categories were developed, in part, 
through the use of a qualitative analysis 
technique of iteratively and systematically 
reviewing and assigning codes to each piece 
of student writing in which each code, a word 
or phrase, represented a characteristic or 
phenomenon of interest in the data (Corbin & 
Strauss, 2015). These codes were then further 
aggregated to generate the categories within 
each tier and were continuously vetted by 
experts for appropriateness within the context 
of operational use. Figure 2 presents the overall 
process of iteratively combining qualitative 
coding with expert oversight with the end 
product as the three-tiered definition of at-risk 
student responses. While only a single person 
conducted the qualitative coding that was used 
to engage in a systematic process of reviewing 
and summarizing responses to build out a 
definition, the iterative process of mapping 
codes to tiers was done through the oversight of 
an expert staff member in hand-scoring. 

Figure 2. Qualitative Coding Approach for Defining 
At-Risk Student Responses

Data

For the qualitative coding, we focused only 
on responses that were 10 words or less in 
length; a restriction that allowed for a greater 
number of student responses to be reviewed. 
8,344 responses were included in this analytic 
sample. 7,791 responses been previously 
classified as an at-risk student response by 
a neural network model but were verified 
by human raters to be normal (these false 
positive responses are referred to as “not-alert” 
responses). Responses that comprised this 
sample were student responses of any grade 
and content area from any state served by CAI. 
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In addition to the “non-alert” responses, 
553 of these short responses were those that 
both humans and the neural network classified 
as true at-risk student responses (referred to 
as “alert” responses). We expected that these 
student responses would all be responses that 
are consisting of language indicative of harm, 
in alignment with the only existing definition 
Smarter Balanced definition outlined above, 
and one goal of coding these was to develop a 
coding scheme to capture harm-related student 
writing. 

Developing the Qualitative Coding Scheme

We hypothesized that student writing that 
does not fall cleanly into the binary classification 
of at-risk student response vs. normal response 
are those that are often characterized as 
being emotive in nature. As such, through the 
qualitative coding process, we explored the 
role that emotion plays in student responses, 
and how codifying these emotions might help 
us define at-risk student responses. Therefore, 
to characterize the content of this sample of 
responses, our qualitative coding scheme was 
comprised of the following three types of codes: 
(1) codes characterizing negative emotions, 
(2) codes capturing reports of imminent, past, 
or current harm, and (3) codes describing 
responses that do not exhibit a clear instance of 
emotion. These three groups of codes helped 
us understand the following about the text within 
our analytic sample: the proportion of student 
writing that could be codified as expressing 
emotion, the types of harmful situations and 
events students are reporting, and the non-
emotion codes that can characterize the 
remaining student responses. We first coded 
“non-alerts” and then proceeded with the “alert” 
sample of student writing.

Coding of Non-Alerts

We started the iterative process by applying 
codes to student writing with a list of nineteen 
negative emotions: anger, anxiety, blame, 
disappointment, disgust, embarrassment, fear, 
frustration, grief, guilt, humiliation, hurt, jealousy, 
loneliness, overwhelmed, regret, sadness, 
shame, and worry (Brown, 2018).  For each 
piece of student writing, we first determined 

whether or not the student expressed emotion. 
If so, then the piece of writing was assigned 
one of the emotion codes. If no emotion was 
present in the response, then we took a more 
inductive approach to coding and created a 
non-emotion code that accurately characterized 
the text. Some of these codes were: physical 
discomfort, language issues, reports of not 
having opportunity to learn the material, and a 
catch-all category for written work that couldn’t 
be categorized by any of the emotive or non-
emotive codes (most often, these responses 
were responses that were on-topic for a 
particular test item and were sometimes flagged 
for language that, without context, might seem 
similar in nature to at-risk student responses). 
In the event that the classification of a student 
response was unclear, it was coded as “other.” 
This initial coding phase was followed by a 
series of iterations to review codes that were 
identified as “other.” Additional codes were 
developed to classify these pieces of student 
text when it made sense to do so, and when it 
was difficult to differentiate between two codes, 
we would collapse these codes into a single 
code. 

Approximately half of the responses fell 
into the catch-all category for written work that 
couldn’t be categorized by any of the emotive or 
non-emotive codes. Of the remaining pieces of 
student writing, 70% of them were characterized 
by an emotion code. Of the original nineteen 
emotion codes, eleven were used at least 
once: Anger, anxiety, fear, frustration, grief, hurt, 
jealously, loneliness, overwhelmed, sadness, 
and shame. Four additional emotion codes 
were added based on what was present in the 
data: Apathetic, bored, confused, and emotional 
fatigue (e.g., a student reports that they are 
emotionally exhausted and can’t continue on 
with the test). Of these, frustrated was the most 
common emotion, followed by anger, confusion, 
being overwhelmed, apathetic, and feeling 
shame (i.e., negatively compares self’s actions 
with self’s standards). Frequent non-emotion 
codes were those where the student simply 
stated that they didn’t know the answer (without 
exhibiting emotion) and reporting complaints of 
physical discomfort. 
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Coding of Alerts
To gather information on types of harmful 

situations and events students reported, we 
engaged in the following coding process: We 
first reviewed each of the alert responses to 
determine if the response was explicitly stating 
a past, present or imminent harmful situation. If 
it was, then a harm code was applied through 
an inductive approach. Otherwise, the response 
underwent the same procedure outlined above 
for non-alerts (assigning either an emotion or 
non-emotion code to each piece of student 
writing).

While the primary purpose of the coding 
was to gather empirical evidence of the 
types of harm that students are reporting, we 
concurrently found that our coding results were 
contrary to our hypothesis that all of these “true 
alerts” would be coded as imminent, present 
or past harm. The emotions of frustrated, 
overwhelmed, anger, shame, bored and sad 
comprised 60% of this sample of alerts. As 
such, this coding process illuminated a possible 
artifact of the “status quo” flagging approach, 
absent of a clear and non-binary definition.  

Mapping Codes to Tiers and Human Expert 
Review

These codes continued to be refined as 
they underwent the mapping process which we 
linked each qualitative code to one of the three 
tiers. For example, the code Frustrated was 
further refined into two sub-codes: Frustrated: 
Hyperbolic (Frustrated statements that include 
violent language) which was mapped to Tier B, 
and Frustrated: Irritated (Characterized by being 

annoyed or irritated) which was mapped to  
Tier C. 

As shown in Figure 2, This mapping process 
was performed in-step with a handscoring 
expert, who had 25 years of experience of 
managing and directing hand scoring centers 
tasks with reviewing and assigning scores 
to millions of pieces of student writing. The 
alignment between the codes and the tiers 
was thoroughly reviewed by expert judgement 
to ensure that these categories wouldn’t be 
problematic in operational use.  

These codes were then aggregated to 
create categories within each tier. For example, 
the emotions of sad, lonely, hurt, grief, anxiety 
and fear were used to describe a sub-category 
in the Concerning tier: Signs of depression, self-
loathing, or anxiety. 

Results

The final coding scheme is presented in 
Table 1, which also represents the mapping of 
each qualitative code to each of the three tiers. 
The final definition is presented below in Table 
2 and was used to train the human raters on 
how to differentiate between the three types 
of responses. Note that the Tier A Categories 
closely reflect the Smarter Balanced definition 
of an alert, whereas Tier B delineates cases 
of student writing that exhibit potential harm. 
The categories of the Tier C responses outline 
those type of responses that are similar to Tier B 
responses but have been deemed to not meet 
the criteria of either harm or potential harm.  

Table 1. Final Qualitative Coding Scheme for Normal, Concerning and Alerts

Qualitative Code Description

Tier A: Alerts*

Sad: Extreme Expressing extreme signs of depression

Suicide Describing suicidal ideation or attempt

Violence Reporting or threatening violence

Rape Reporting or threating rape

Abuse Reporting or threating abuse

Drugs Reporting or using drugs 

Help: Specific Specific and serious request for help
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Qualitative Code Description

Tier B: Concerning

Overwhelmed Request for help that isn’t specific, nor test-related

Frustrated: Hyperbolic Frustrated statements that include violent language 

Anger: Hate (Protected Class) Derogatory terms used to attack protected class (hate speech)

Hurt Reports dissatisfaction over quality of life

Sad Express signs of depression, unhappiness, or need to cry

Lonely Lack of social support, feelings of being isolated, or abandoned

Grief Express loss of relationship

Anxiety/Fear Express anxiety, fear or stress

Shame Negatively compares self’s actions with self’s standards

Gun** Non-threating mention of a gun

Suggestive** Text suspect of student being the perpetrator or victim of violence

Sexual ** Sexual imagery without threatening abuse or reporting abuse

Tier C: Normal

Frustrated: Irritate Characterized by being annoyed or irritated

Anger: Hate Hating someone or something without threats of harm or violence

Anger Disparaging Disparaging remarks and/or other interpersonal distress 

Anger: Jealousy Jealous remarks indicating interpersonal distress

Bored Expressing boredom

Apathy Expressing lack of interest in test

Emotional Fatigue Displays of emotional fatigue

Confused Expressing confusion regarding test

Help: Test ** Test-related request for help

OTL** Reports not having opportunity to learn

IDK** Reports not knowing content

Technical** Technical issues with computer and test

Other Normal responses that do not fall into any of the above categories

* The only emotive code for alerts is identifying cases of extreme depression (Sad:Extreme)

** Non-emotive codes

Table 2. At-Risk Student Response Definition

Tier Category Details

A - Alert

Harm to self or another being. Suicide, self-harm, or extreme depression; threats or 
reports of violence, rape, abuse, drug use, eating disorders, 
or neglect; hate speech with threats of violence.

Contains mention of a gun. Must be threatening.

Specific and serious request 
for help. 

Not test-related.
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Human Detection of At-Risk 
Student Responses

The second portion of this study was 
to explore how well human graders can 
differentiate between the three tiers of the 
definition. For this exploration, we trained six 
human raters to review thousands of student 
responses and locate each response within one 
of the three tiers by assigning a label of A, B 
or C. All pieces of student writing were labeled 
by two raters. Responses receiving discrepant 
labels were sent for adjudication by an expert 
rater. 

Methods

Data. 13,000 responses were used in this 
study.  Five-thousand responses were identified 
as containing disturbing content by human 
raters (using the Smarter Balanced guidelines), 
and the other 8,000 were deemed normal by 
human raters. Although 8,000 were considered 
normal, we ran these responses through a 
series of trained neural networks and selected 
the responses that had the highest probability 
of being an alert response. The purpose of this 
approach was to capture a sample of student 

responses that might be difficult to classify in 
the context of a binary definition. In other words, 
we were interested in responses that contained 
characteristics that might blur the lines between 
an alert and non-alert – i.e., Tier B responses. 
For this sample of responses, there was no 
length restriction, and consisted of writing across 
all available grades and content areas. 

Training and Rating Procedure. Six human 
raters were hired for this task from a pool of 
raters that have previously scored open-ended 
assessment items for CAI, but none had prior 
experience classifying responses into three tiers 
of alerts. However, at least one had experience 
with determining the student authenticity of 
the “teen line” responses used in Ormerod and 
Harris (2016). While these raters had experience 
with scoring essays, none were experts in 
these types of alerts (though some may have 
encountered them during routine grading 
assignments). This study requirement allowed 
us to examine our hypothesis that locating 
student writing within the three different tiers is a 
trainable phenomenon. 

Upon the development of the rubric, we 
created training resources and trained the six 
humans to label 12,917 responses according to 

Tier Category Details

B - Concerning

Non-specific request for help. Not specific to test or harm. 

Sexual Imagery. Without threats or reports of abuse.

Violent words or phrases. No explicit reports of being the perpetrator or victim of 
violence, but text seems suspect; non-threatening mention 
of a gun; hate speech without threats.

Signs of depression, self-
loathing, or anxiety.

Sad, lack of social support, dissatisfaction for life, grief, 
anxiety, negative attitude towards self. Includes hyperbolic 
language about wanting to die.

C - Normal

Hating another entity. Hate towards someone or thing, and without threats of 
harm or violence. Does not include hate speech.

Situational testing issues.  Complaints of physical discomfort, technical issues with 
test, not understanding English, lack of engagement with 
the test, not knowing what to do on the test, frustration with 
the test.

All other responses All responses that are note characterized by any of the 
criteria outlined in this definition.
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the definition (83 responses were flagged by the 
humans as being written in Spanish and were 
removed from the sample). Upon the review 
of the rubric, we administered three qualifying 
sets to the raters, each containing ten pieces 
of student writing. The raters were instructed 
to assign one of three labels to each piece of 
student writing to denote which tier the writing 
belongs to. The results from these sets were 
sufficient to qualify each rater to proceed in the 
process (see Table 3).

This scoring consistency prompted the next 
portion of the training, which was for all raters to 
be assigned a computer and begin classifying 
the 12,917 responses. On the screen, one piece 
of student writing was presented at a time, and 
the rater determined which tier the student 
response belonged to. For the first two hours, 
the raters were able to confer with one another 
prior to selecting the tier. After two hours, a set 
of three pieces of student writing (i.e., validity 
papers) were presented to the raters, to ensure 
that decisions that they were making were still 
aligned with the rubric. All raters agreed on the 
three answers. 

After the validity check, raters began to 
score without consulting one another; asking 
the lead rater questions as necessary. They 
continued to classify student writing for six 
days, while agreement rates were monitored 
throughout the process, and validity papers 
were administered daily to ensure that human 
raters continued to be consistent with the rubric. 
Agreement rates and score point distributions 
were monitored for two key issues: 1) to ensure 
that agreement rates were high, and no 
intervention was needed to clarify the rubric; 
and, 2) to detect any characteristics of the data 
that could indicate that raters were going “off-
script” from the rubric and making changes that 
might be different from the rubric (which would 
result in even higher agreement rates). As such, 
no intervention was needed, as the agreement 
rates and score point distributions remained 
steady over the course of the six days. All 
responses were double-labeled and underwent 
expert review when scores were discrepant. 

Results

Table 3 presents the results of the three 
qualifying sets; no rater mislabeled more than 
two pieces of student writing, and the modal 
score was 90%. These results were sufficient to 
qualify each of the raters.

Table 3. Percent correct for three qualifying sets  
of 10. 

Qualifying Set Rater 1 Rater 2 Rater 3

1 90 100 90
2 90 90 80
3 100 90 90

Qualifying Set Rater 4 Rater 5 Rater 6

1 100 90 100

2 90 80 80

3 90 80 90

Table 4 presents the cross-tabulation 
between scores assigned by rater 1 and rater 
2, using rater 1 as the basis for comparison, the 
category proportion agreements are included 
parenthetically.

Table 4. Cross Tabulation between Rater 1 and  
Rater 2

Rater 2

Alert Concerning Normal Total

R
at

er
 1

Alert
2391
(83%)

401
(14%)

83
(3%) 2875

Concerning
464
(21%)

1413
(65%)

289
(13%) 2166

Normal
102
(1%)

317
(4%)

7457
(95%) 7876

Total 2957 2131 7829 12917

The exact agreement between the two 
raters was 87%, non-adjacent agreement was 
11%, and non-adjacent agreement rate was 1.4%. 
The “normal” written responses were the easiest 
for readers to agree on (exact agreement rate 
of 95%), followed by alerts where raters agreed 
on 83% of the placements of pieces of student 
writing, and lastly the “concerning” results 
were the most difficult for agreement (exact 
agreement of 65%).  
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Some notable patterns emerged from an 
inspection of text of the non-adjacent ratings 
(where one rater identified the response as 
“normal” and the other rater identified it as 
an “alert”).  At times, the discrepancy seemed 
to be due to an accidental misclassification 
of “normal.” In such cases, the text was long 
and irregularly formatted (e.g., a lot of carriage 
returns). The content at the beginning of the 
text was benign in nature, but it either quickly 
escalated into alarming content, or a student 
reported harm within a small portion of the text. 
If the rater didn’t read the entire text closely, 
it would be easy to accidentally flag such 
response as normal. 

Another characteristics of these 
discrepancies were responses that seemed to 
be written to be both fantastical in nature as 
well as violent. The apparent fictional aspects 
of the story may have dissuaded some raters 
from taking the content literally and assigned a 
“normal” whereas another rater adhered more 
closely to literal tendency of the rubric. 

Some of the responses that seemed to 
cause a lot of adjacent disagreement between 
“concerning” and “alerts” were when the student 
expressed dissatisfaction towards themselves 
or their lives. Some of these pieces of student 
writing were hard to differentiate between self-
loathing (e.g., “teenage angst”) and something 
more extreme and indicative of potential self-
harm. 

As noted above, the original composition of 
these sample consisted of approximately 5,000 
pieces of student writing that were previously 
flagged as alerts under the Smarter Balanced 
definition, and 8,000 pieces of text that were 
considered normal (40% and 60% respectively). 
Under the new tiered definition, and the final, 
adjudicated score, we note that the new 
distribution is the following: 23% were flagged 
as alerts, 17% were flagged as concerning, and 
61% were flagged as normal. While most of 
the normal responses remained as such (with 
4% shifting to “concerning” and 1% shifting 
to “alert”), we see a larger redistribution of 
responses within the alert sample; of the 5,000 

responses, only 57% of them remain as alerts, 
36% are now considered “concerning” and 6% 
were now identified as normal. 

Machine Detection of At-Risk 
Student Responses

Methods

This final component of the study explores 
the performance of statistical classifiers in 
distinguishing between different levels of 
student responses (normal, concerning, or 
alerts). We compared five different models, 
which allowed us to observe the stability of 
modeling and to see whether -- and how -- 
complexity adds value. Through this model 
building process, we compared different 
inputs and classifiers. We compared inputs of 
fixed length vectors representing each text 
document using Latent Semantic Analysis 
(LSA) to sequences of word embeddings. We 
also compared a linear classifier to neural 
networks to test to see if the non-linearity of 
neural networks leads to improved model 
performance. Figure 3 presents the five models, 
their associated characteristics and inputs, 
an overview of the classifiers, LSA, and word 
embeddings are presented below. 

In order to create the LSA matrix and 
training the linear support vector classifier, we 
used scikit-learn’s implementation (Pedregosa 
et. al., 2011). When building neural networks, we 
used the deep-learning framework for Keras 
(Chollet, 2018) as the front-end, which relies on 
Tensorflow as the backend engine (Abadi, et 
al., 2015). Word embeddings were trained using 
a Word2Vec model and the Python package 
Gensim (Rehurek and Sojka, 2010). 

To evaluate the different models, we 
computed agreement statistics between an 
adjudicated human grader and the machine 
score, namely exact, adjacent, and non-adjacent 
agreement, as well as quadratic weighted 
kappa QWK). The score point distributions 
across the three categories was also computed 
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and compared between the machine and the 
adjudicated human score.

Figure 3. Input and Classifiers for Five Models

Data

Of the 12,917 responses scored by humans, 
we removed a small number of responses that 
were uncharacteristically long to ensure that 
they wouldn’t be an issue in training. Training 
and validation were conducted on the remaining 
12,901 responses. All of the competing models 
were trained on the same training sample and 
validated on the same test sample. We trained 
each classifier using the adjudicated human 
score from the human-scoring portion of this 
experiment. 

Features

Latent Semantic Analysis (LSA)

The input for the first two models, the linear 
support vector classifier and the feed forward 
neural network (i.e., the multi-layer perceptron) 
relied on a dimension reduction technique 
called latent semantic analysis (LSA), which 
is a variance decomposition technique that 
captures the similarities of words and pieces of 
writing (Landauer and Dumais, 1997). LSA has 
been used in the context of automated scoring 
(Foltz et al., 1999) and other intelligent tutoring 
systems (e.g., Kintsch et al, 2000; Dessus et 
al., 2000), and is thought to reflect the salient 
semantic information of a text document. 

The process to transform the student 
responses into a matrix was as follows: First 
the responses underwent a small amount of 
pre-processing to remove html tags. We then 
transformed each piece of student writing 
into vector representations by first counting 
the number of unique unigrams (single words) 
within each response in the training sample. We 
then applied a normalization approach called 
term frequency-inverse document frequency 

(tf-idf) to these vectors, so that n-grams that 
occur frequently across all pieces of student 
writing in the training sample are weighted 
less heavily compared to more unique words. 
This matrix then underwent the dimension 
reduction technique, which is specified as 
support vector decomposition, or SVD, in scikit-
learn. In performing this reduction, the number 
of dimensions of the normalized vectors was 
then reduced from 37,000 to an optimal 3,500 
components.  This number was selected through 
a small bootstrap study undertaken to pick the 
optimal number of components.

Word Embeddings

Word embeddings are numeric 
representations of words in low dimension 
vectors (in this study, 200-dimensional space) 
that capture semantic relations among words 
and are oftentimes used in a sequence labeling 
task. Word embeddings are impacted by the 
corpus on which they are trained, and so, 
instead of using pre-trained word embeddings, 
we trained our own embeddings on a corpus of 
student writing consisting of 1.12 million words.

Classifiers

Support Vector Machines

Support vector machines (SVMs) have 
been shown to perform well on a variety of 
classification tasks (James, Witten, Hastie, & 
Tibshirani, 2013). In an m-dimensional vector 
space, an (m-1)-dimensional hyperplane is fit 
in such a way that the distance between the 
hyperplane and the nearest training feature 
vectors from each of the classes (the “support 
vectors”) is maximized. New documents are 
then mapped to the same space, and the 
classification is determined based on which 
side of the hyperplane the document is mapped 
to. Multi-classification was obtained through a 
one-vs-the-rest approach, which means that the 
model was fit three times, each time comparing 
one of the classes to the other two classes. 
Default parameters were used in scikit-learn, 
and so a cross-validation framework was not 
required to pick hyperparameters. 
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Feed-Forward Network

A multi-layered perceptron, or a standard 
feed-forward neural network was used to 
assess whether non-linearity leads to improved 
performance, while still using the fixed-length 
inputs of an LSA matrix. To describe the basic 
framework of a neural network model, it can be 
helpful to begin with a logistic regression model, 
which can be written as the following: 

( ) = ( + ) 

Where W is the weight matrix, x are the 
features, b is the bias term (or intercept), and 
g is the sigmoid function. The pivot, then, from 
this representation to a feed forward network is 
rather straight forward, and can be thought of 
as including a hidden layer, which can then be 
written as this this:

1
( ) = ( + ) +  

∈ ℝ , ∈ ℝ × 1 , ∈  ℝ 1 , ∈  ℝ 1× 2  , ∈  ℝ 2  

The single hidden layer here is g(xW1 + b1). 
If we had two hidden layers, each layer can be 
depicted using the intermediate variables h1, h2 
and y (here, the bias vectors are forced to zero 
in the last layer):

2
( ) =  

1 =  1( + ) 
2 =   2( + ) 

= 2   

The vector that results from each linear 
transformation is a layer (the outer most is 
the output layer, and all others are the hidden 
layers). Each hidden layer is followed by a 
non-linear activation. For logistic regression, 
g represents the sigmoid function, but in this 
context, g refers to the activation function, and 
is not limited to a sigmoid function, but any 
number of non-linear functions -- some of the 
most popular being the sigmoid, tanh, hard tanh, 
and the rectified linear unit (ReLU). For a more 
in-depth primer on the use of such networks 
(along with more complex models) in the context 

of natural language processing, see Goldberg 
(2017).

For our present study, we trialed an 
architecture using three hidden layers, each with 
a different number of hidden units (1000, 250, 
50). The output layer is a distribution across all 
three class assignments, and sums to 1. Between 
each layer, we applied a regularization technique 
called dropout training to prevent overfitting 
by preventing the networking from learning 
to rely on specific weights. In this feedforward 
network, the activation function applied to each 
hidden layer is a hyperbolic-tan function, which 
transforms the values of x into the range [-1, 1]. 
The architecture of this model was configured 
based prior findings with similar data.

The training process consists of optimizing 
a loss function as a function of the parameters 
defining the network over all the training data 
for a fixed number of times. Each iteration over 
the training data is called an epoch. We ran the 
training over as many epochs as it took for the 
associated loss function to not improve within 
some tolerance. We visually determined that the 
loss function showed little improvement after 10 
epochs.  This was determined by first dividing 
the training sample into a training and validation 
sample, and then observing that the training and 
validation accuracy and loss both improved up 
to, and including, 10 epochs, and then diverged 
after 10 epochs. To minimize the error in the 
training data, we applied the loss function of 
categorical cross-entropy.

Recurring Neural Networks and LSTMs

Recurrent neural networks (RNNs) can be 
used to model sequences of words, whereby 
the next word in a sequence is modeled on 
the previous words. Very simply put, these 
are networks with loops in them, which allows 
information to be passed from one step in the 
network the next step. While RNNS are often 
times used for language generation tasks, such 
as machine translation, we can also use them 
to output a class label at the last sequence 
element. 

A distinguishing feature of such networks 
is that they can be used to analyze inputs of 
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different lengths (this limitation was addressed 
in our feed-forward network’s by using a fixed-
length input of 3,500 features). Furthermore, 
with recurrent networks, features that explicitly 
depend on word order can be learned 
(whereas semantic meaning across words 
was not retained in the LSA “bag-of-words” 
approach). This makes recurrent neural networks 
ubiquitous in natural language processing tasks, 
and a promising approach for improving the 
classification accuracy this present study.  

However, learning sequences where there 
are dependencies between disparate elements 
in the sequences -- such as long pieces of 
student writing where the most recent words 
might not provide all of the necessary context 
to predict the appropriate tier classification 
-- presents a major problem. In a simple neural 
network with traditional optimizers based on 
the stochastic gradient descent methods, the 
chain rule dictates that the dependence on 
previous inputs drops off exponentially with 
length. This problem for recurrent networks is 
known as the “vanishing gradient problem,” and 
Hochreiter and Schmidhuber (1997) proposed 
a solution called “Long-Short-Term Memory” 
(LSTM). Whereas simple RNNs have a structure 
of a single neural network layer, LSTMs have 
four layers that interact as a gating mechanism 
to transfer states of previous units in a way that 
better learns long-term dependencies. The 
structure of LSTM-based recurrent networks is 
further discussed in Olah (2015).

Through the work of language translation 
tasks, it was noticed that the performance of 
the neural network performed better if one of 
the languages was inputted into a recurrent 
layer of LSTM units in the opposite order to the 
other language. The solution proposed was that 
one constructs a recurrent network in which, 
given a sequence, half the units in a layer are 
fed the sequence in the correct order while 
the other half are fed the input in reverse. The 
resulting construction is known as a bidirectional 
recurrent neural network, which we implement 
as our most complex model. 

The model we choose to represent the 
simplest viable recurrent neural network, which 
we called Model 3, consisted of a single layer of 
512 LSTM units. Given any sequence of words, 
the output of this layer was taken to be the 
output of the last recurrent units, hence, is a 
fixed vector of length 512. Linear combinations 
of the elements of this vector are formed to 
obtain a single vector of length 3, which is a 
single value for each tier alert, at which point we 
apply a softmax function to obtain probabilities 
that neural network the input. Similarly, Model 
4 is defined by stacking 2 layers of LSTM units 
in the above described manner, each layer 
consisting of 256 units so that the output of the 
stacked LSTM layers is a vector of length 256. 
This output is then sent to a vector of length 
three where a softmax function is applied. Lastly, 
Model 5 consisted of 2 layers of bidirectional 
LSTM units where in each layer we have 128 
units fed the sequence in the correct order and 
another 128 units fed the sequence in reverse. 
The output is a vector of length 256 from which 
we obtain a vector of length 3 in the same 
manner as Model 4.

Results

Table 5 presents the results from the five 
models, as well as the agreement statistics 
between the human raters. Though the linear 
support vector classifier performed similarly 
to the neural networks, there is a bit of an 
improvement observed as we move from 
the SVC to the feed forward network, and 
slightly more improvement is observed in the 
two most complex models. The single LSTM 
layer performed the worst of all the models. 
However, even the more complex models 
don’t result in large gains for QWK and non-
adjacent agreement rates. Additionally, while 
the score point distributions are consistent with 
adjudicated human scores, the best-performing 
model has a higher non-adjacent rate (1.7% 
higher,) and lower QWK (.04) compared to the 
human raters. A further examination of the 
non-adjacent responses reviewed that there 
were slightly more “normal” responses that 
were classified as “alerts” by the model (39 
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responses), compared to the other way around: 
31 responses were considered true alerts by 
the human, but the machine classified them 
as normal.  Of these 31 responses, 10 of them 

received a score adjudication, noting that they 
caused some amount of confusion for human 
raters as well.  

Table 5. Validation results from competing models (n = 2584)

Human
Model 1
LSA + SVC

Model 2
LSA + Feed 
Forward 
Network

Model 3
Word 
Embedding + 
LSTM  
(1 layer)

Model 4
Word 
Embedding + 
LSTM  
(2 layers)

Model 5
Word 
Embedding + 
Bidirectional 
LSTM  
(2 layers)

SPD (%)

Alert 23 24 23 25 23 24

Concerning 16 11 16.5 17 14 15

Normal 61 64 61 57 62 61

Agreement (%)

Exact 88 86 86 82 86 87

Adjacent 11 10.5 11 15 12 10

Non-adjacent 1.0 3.5 3.0 3.6 2.6 2.7

QWK .89 .83 .84 .80 .84 .85

Note: Human agreement rate is computed on the two human raters, whereas Human SPD is the resolved, final score. The 
agreement rate for the automated engines is computed on the engine score and the resolved, final score.

Discussion and Limitations
The exercise of qualitative coding of 

emotions, along with a small number of non-
emotions codes, allowed us to group and 
synthesize responses to ensure that our 
definition was comprehensive of student 
responses that were either inconsistently 
classified by humans or misclassified by neural 
networks. While emotions didn’t contribute 
largely to the Alert tier of the definition, 
characterizing different emotional responses 
aided in the construction of the Concerning 
and Normal tiers. This analysis also exposed 
that current guidelines may be problematic in 
consistent classifications: we found that it wasn’t 
unusual for responses that didn’t explicitly state 
harm to be flagged as such by humans. 

We do note a number of limitations with this 
process.  The sample used for the qualitative 
coding exercise was not only a non-random 
sample, but it also consisted of very brief 

responses (10 words or less). It is possible that 
we could have arrived at different results with 
longer responses. Furthermore, we might expect 
different results if we used a different analytic 
framework, other than emotions, to guide our 
coding work.  Additionally, the qualitative coding 
was conducted by a single rater – and while the 
results were then vetted for their usefulness in 
developing a definition by a hand-scoring expert 
– we have no knowledge of inter-rater reliability 
for the codes. 

As we set forth the proposed definition 
of this paper, we acknowledge that not all the 
criteria in the definition are set in stone, nor 
does our definition necessarily encompass all 
instances of Alert, Normal, and Concerning 
responses. We anticipate that additions and 
modifications can be added to this, based on 
new data and/or changes in demands from 
policies or stakeholders, such as states or school 
districts. 
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Even though the tiered definition may not 
be in its final state, the results from our hand-
scoring portion of the project does suggest 
that such a definition is a viable approach in an 
operational setting. We found that we can be 
cautiously optimistic with humans being able 
to differentiate between the tiers, with an exact 
agreement rate of 87%, adjacent rate of 11% and 
non-adjacent of 1.4%. The “normal” responses 
were the easiest for the raters to agree upon, 
followed by the “alerts.” The “concerning” pieces 
of student writing were the most difficult to 
agree upon, and possible emphasis in training 
on differentiating between “concerning” and 
“alerts” and “concerning” and “normal” might 
improve rater agreement. One clear area to 
encourage these efforts would be in further 
outlining the differences between “extreme 
depression” from the self-loathing and less 
severe forms of sadness, and by providing more 
examples of each.  

Though these agreement statistics may be 
considered a success in the context of hand-
scoring test items, the possible implications of 
misclassifying a student asking for help demands 
stricter standards. At this point in the research, 
there is not only room for improvement, but 
also promising avenues to improve the exact 
agreement rate, while reducing the non-adjacent 
rate. 

Improvements can be made in both 
clarifying the rubric and focusing on particular 
characteristics of writing during rater training, 
such as more pointedly addressing how to 
account for fantastical writing, emphasizing the 
need to carefully read seemingly normal prose, 
and by providing more examples of the edge 
cases within the Concerning Tier. Additionally, 
further research or implementation of this rubric 
could include a range-finding committee.

When we used these human classifications 
as training data for our series of models, we 
found that the best performing model was the 
bi-directional LSTM model. Although the exact 
agreement rate is quite similar to the human 
raters (as is the score-point distribution) the 
non-adjacent agreement was slightly lower. And, 

while the difference may be less of a concern 
in the context of most automated scoring tasks, 
the implications of a 2.7% non-adjacent rate 
should give us a bit more pause in this context. 
Furthermore, given that machines are trained on, 
and evaluated against, the best available human 
score, one might expect them to out-perform 
human raters. On a positive note, over half 
of these non-adjacent responses were false-
positives. Though such mis-classifications have 
the potential to be a strain on human resources 
who must review all flagged responses, it is 
encouraging to acknowledge that not all 2.7% of 
non-adjacent were instances where a student’s 
request for help would be overlooked. We hope 
that with a bit more training of human raters, and 
possibly more data for training the classifiers, 
we might be able to become closer to human 
performance.

Addressing other limitations of this study 
might also improve model performance, such as 
grounding the parameter choices (e.g., number 
of layers, number of hidden units in layers, 
choice of layer) for the neural networks using 
research-based theory; however, the field is too 
nascent yet to rely on this type of knowledge, 
particularly for text.  We should also take steps to 
explain or uncover why discrepancies occurred, 
as this may help us to refine models. As model 
complexity grows, the mapping of the modeling 
result to the response text becomes more 
challenging. As noted earlier, discrepancies 
are likely due to characteristics of the response 
that make it ‘borderline,’ rarity of the phrasing, 
or the placement of alert text in the response 
relative to the length of the response or other 
words used in the response. Also, classes 
were intentionally sampled in a way that were 
somewhat balanced. Training and evaluating 
performance using imbalanced data that better 
reflects the rarity of such pieces of student 
writing would provide more insight into how 
such filter will do operationally. Additionally, the 
size of the dataset was relatively small (about 
13,000) for modeling. 

While being mindful of these limitations 
and revisions, our findings suggest that the 
operational use of this definition can be useful 
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in a number of different ways. First, in contexts 
where human graders are scoring responses, 
this tiered definition can reduce the burden that 
is placed on human graders to decide how to 
handle questionable pieces of text, by guiding 
them in their classification decisions. This, in 
turn, will lead to less noisy training data that 
can serve to train an accurate and automatic 
detection system. Furthermore, this definition 
can offer more flexibility to schools, districts and 
states as to what types of responses should be 
further vetted by school personnel. Ultimately, 
the work in improving the classification of both 
human raters and statistical models is important 
so that students who need intervention can 
receive appropriate intervention in a timely 
manner.
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